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An accurate non-linear theory of the three-dimensional bending of cylindrical (prismatic) elastic solids is proposed. For three- 
dimensional bending, each material straight line parallel to the axis of a prismatic beam is converted into a helical line after 
deformation. All these helical lines have a common axis, orthogonal to the initial m, ds of the rod. This three-dimensional problem 
of the non-linear theory of elasticity is reduced to a two-dimensional boundary-value problem for a plane region in the form of 
a cross-section of the beam. The solution of the two-dimensional problem obtained enables the equilibrium equations to be exactly 
satisfied in the volume of the cylindrical solid and also enables the boundary conditions to be satisfied on the side surface of the 
prism. The boundary conditions at the ends of the beam are satisfied in the integral sense, the system of forces acting in the end 
section of the cylinder is statically equivalent to a force and a moment, which are applied at a point on the axis of the above- 
mentioned helical lines and directed along this axis. Variational formulations of the non-linear boundary-value problem in a section 
of the beam subjected to three-dimensional bending are given. © 2004 Elsevier Ltd. Alt rights reserved. 

1. T H E  T W O - P A R A M E T E R  F A M I L I E S  O F  F I N I T E  D E F O R M A T I O N S  
O F  A P R I S M A T I C  B E A M  

The  system of elastostatic equat ions of  an elastic when there are no mass forces consists [1] of  the 
equilibrium equat ions 

divD = 0 (1.1) 

the equat ions of  state 

and the geometr ical  relations 

D = d W / d C  = P . C ,  P = 2 d W / d G  (1.2) 

G = C - C  r, C = gradR, R = Xki k (1.3) 

Here  C is the gradient  of  the deformation,  X~ (k = 1, 2, 3) are Cartesian coordinates  of  particles o f  
the de fo rmed  solid (Euler  coordinates) ,  G is the measure  of  the Cauchy deformation,  ik are coordinate  
unit vectors, D is the asymmetrical Piola stress tensor, P is the symmetrical Kirchhoff  stress tensor, W ( G )  

is the specific potential  energy of  deformat ion of  an elastic material, and div and grad are the divergence 
and gradient  opera tors  in Lagrange  coordinates.  We will hencefor th  use as the latter the Cartesian 
coordinates o f  the reference configuration of  the solidx s (s = 1, 2, 3). In the case of  an isotropic material  
the specific energy W can be expressed in terms of  the invariants o f  the tensor  G 

1 2 
= trG, 12 = g(tr G - t r G 2 ) ,  13 = detG I 1 

Z, 

System (1.1)-(1.3) can easily be reduced  to a system three non-l inear  scalar  equat ions with unknown 
functions X1, X2 and X3 and independent  variables Xl, x2 and x 3. 

Below we will give particular solutions of  system of equations (1.1)-(1.3) containing unknown functions 
of  only two Lagrange coordinates. Each  of  these solutions represents a two-parameter  family of  deforma- 
tions, which are described using the functions 

Xk ---- Sk(Xl, X2, X3) , k =  1 , 2 , 3  

We will assume that the elastic solid in the reference configuration has the form of  a cylinder (a prism) 
of  arbitrary cross-section. The generat ing cylinders are parallel to the x3 axis while the coordinates  xl 
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and x2 are measured in the plane of the cross-section. We will consider the following two-parameter 
family of deformations of a cylindrical body. 

X 1 -~ Ul(Xl, x2) -t- Ix 3 

X 2 = u2(xl ,  x2 )cos (ox  3 - u3(xl ,  x2)sintox 3 

X 3 --- u2(x1, x2)sin(ox 3 + g3(Xl, x2)cos(Ox 3 
(1.4) 

o , l  = const 

It is easy to see that, for a deformation of the form (1.4), each material straight line xl = const, 
x2 = const, parallel to the axis of the cylinder in the reference configuration, after deformation is 
converted into a simple helical line, the axis of which is the straight line)(2 = X3 = 0. When l = u3 = 0, 
formulae (1.4) describe the pure bending of a prismatic beam in theyx2x3 plane investigated previously 
in [2]. On the basis of relations (1.2)-(1.4) we obtain (uk, ~ = OudOx~) 

C(Xl,  x2, x3) = Csk(Xl, x2)is ® Jk, G = CsmCkmi s ® it` 

Jl  = i l ,  J2 = i2c°s°~x3+i3s in01x3 ,  J3 = - i 2 s i n ° ~ x 3 + i 3 c ° s ( 0 x 3  (1.5) 

Cat ̀ = Uk, a, Ct = 1,2; k = 1,2, 3; C31 = l, C32 = -cou 3, C33 = 03u 2 

It can be seen that the measure of the Cauchy deformation G is independent of the x 3 coordinate. 
If the elastic solid is homogeneous along the x3 coordinate, the Kirchhoff stress tensor P, by Eq. (1.2), 
will be a function solely of the coordinates xl and x2. The homogeneity of the body along the x3 coordinate 
denotes that the specific elastic energy W can depend explicitly on the Xl and x2 coordinates, but does 
not depend explicitly on x3: W = W(G, Xl, x2). In this case the material may be an anisotropic. 

From relations (1.2) and (1.5), for a body that is homogeneous along the x3 coordinate, we have 

D(x l, x 2, x 3) = Dsk(Xl, X2)i,®jt` (1.6) 

Taking Eq. (1.6) into account, we can write the equilibrium equations (1.1) in the form 

DII,  I + D 2 1 , 2  = 0, D12,1+D22,2-o)D33 = O, DI3,1+D23,2+o)D32 = 0 (1.7) 

Taking relations (1.2) and (1.5) into account, we see that Eqs (1.7) represent a system of three scalar 
equations in three functions of two variables uk(xl, x2) (k = 1, 2, 3). If the distribution of the external 
load fon  the side surface of the prism with unit normal n = nlil + n2i2 is given, the boundary conditions 
on this surface have the form 

n - D  = f (1.8)  

We will assume that the vector of the distributed load f can be represented in the form f = f* • C, 
where the vector f* is independent of the x3 coordinate. Then, the boundary conditions (1.8) for a 
deformation of the form (1.4) will not contain the variable x3 and, together with Eqs (1.7), form a two- 
dimensional boundary-value problem for the plane region in the form of the cross-section of the prism. 
An example of a surface load, for which the vector f* is independent of x3, is a hydrostatic pressure, 
uniformly distributed over the side surface. 

If u3 = l = 0, then, as shown previously in [2], in the case of an isotropic material the equations 
D13 = D31 = D23 = D32 = 0 are satisfied. Hence, the third of Eqs (1.7) is satisfied identically. If, moreover, 
f" J3 = 0, one of the three boundary conditions in (1.8) is also satisfied identically. 

In addition to (1.4) there are also families of deformations of a cylindrical beam, for which the initial 
system of equations of elastostatics can be reduced to a system with two independent variables Xa and 
x> These families are given by the relations 

X 1 -.- D 1 (x1, x2) cos  ~x 3 - l)3(Xl, x2) sin~x 3 

X 2 -- D2(x1, x2) d- tx  3 

X 3 = Ol(Xl,  Xz ) s in~x  3 + l)3(x 1, XE)COS~X 3 
(1.9) 

~, t = const 
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The family (1.9) is no different in principle from the family (1.4), since it describes the three- 
dimensional bending of a beam, for which its axis can be converted into a helical line. The axis of this 
helical line is parallel to the unit vector iq, whereas for the family (1.4) it is parallel to the unit vector 
il. When u3 = t = 0, the family (1.9) describes pure bending of a prismatic rod in the ~1x3 plane. 

The family (1.10), represented previously in another form in [3], differs considerably from (1.4) and 
(1.9), since it describes the axial extension-compression and twisting of a prismatic beam. The formulation 
and solution of the two-dimensional boundary-value problem on a section of the beam, which arises 
in the non-linear theory of twisting, can be found in [3, 41. 

2 .  FORMULATION O F  T H E  TWO-DIMENSIONAL BOUNDARY-VALUE 
PROBLEM ON A CROSS-SECTION O F  T H E  BEAM 

We will consider in more detail the formulation of the two-dimensional boundary-value problem for a 
plane region o in the form of the cross-section of a prismatic beam, which undergoes three-dimensional 
bending, i.e. deformation of the form (1.4). We will assume the side surface of the beam to be load- 
free. The boundary-value problem on the cross-section of the beam consists of boundary conditions 
(1.8), in which f = 0, and of the equilibrium equations (1.7), in which the quantities Dsk are assumed 
to be expressed in terms of unknown functions of two variables uk(xl, x2) (k = 1,2,3) using the governing 
equations (1.2) and kinematic relations (1.5). The constants o and 1 are assumed to be specified 
parameters. 

Suppose u i  (xl, x2) is a certain solution of this boundary-value problem. Then, as can easily be verified, 
the functions 

where K and L are arbitrary real constants, also satisfy Eqs (1.7) and boundary conditions (1.8). This 
indicates that the position of the elastic body after deformation is determined, apart from rotation around 
the X I  axis and translational displacement along the same axis. This non-uniqueness of the solution 
can be removed by imposing additional conditions on the unknown functions, which eliminate the 
possibility of arbitrary rotation around the unit vector il and arbitrary displacement along this unit vector. 
We can use as such conditions, for example, the following integral relations 

We can convert boundary-value problem (1.7), (1.8), (2.2), (2.3) on the cross-section of the prism by 
eliminating the function uk and taking other quantities as the fundamental unknowns. As a result of 
eliminating the functions uk from the expressions for Csk (1.5), we obtain the equations of compatibility 
of the components of the deformation gradient 

It is easy to verify that, in the simply-connected region o, the functions ul, u2 and u3 are uniquely 
defined by the specified functions Ccdo C32, C33, (a  = 1,2; k = 1,2,3), which satisfy Eqs (2.4), with the 
condition that the value of the function ul is specified at a certain point of the region o. 

Since, by Eq. (1.2), the components of the Piola stress tensor Dsk are expressed in terms of the quantity 
C,,, the equilibrium equations (1.7), together with the compatibility equations (2.4) form a system of 
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eight equations with eight unknowns. The number of unknown functions Csk(Xl, x2) (s, k = 1, 2, 3) is 
equal to eight for the reason that the component C31 , according to (1.5), is a known constant. The 
conditions on the contour 0G of the cross-section of the beam 

nlDlk + n2D2k = 0, k = 1, 2, 3 (2.5) 

represent non-linear limitations on the values of the functions Csk(xb X2). 
Boundary-value problem (1.7), (2.4) and (2.5), which describes the three-dimensional bending of an 

elastic beam and formulated in terms of the components of the tensor C, as can easily be verified, is 
insensitive to the following replacement of the unknown functions (K = const) 

C --> C .  [ ( E  - i 1 ® i l ) c o s K  + i I ® i 1 - i 1 × E s i n K ]  

where E is the unit tensor. This non-uniqueness of the solution can be eliminated using limitations (2.3), 
in which cos0 must now be expressed in terms of Cs~ 

C O S 0  : C12 -t- C23 ( 2 . 6 )  

J(C12 -b C23) 2 + (C13 - C22) 2 

The need for conditions (2.2) obviously disappears if we take the components of the tensor C as the 
unknowns. 

Instead of the components of the deformation gradient C we can take the components Dmn of the 
Piola stress tensor as the unknown functions. In order to write the compatibility equations (2.4) in terms 
of the stresses, it is necessary to express the deformation gradient C in terms of the tensor D. The solution 
of this problem, in the special case of the pure bending of a beam, when C~3 = C3a = Da3 = D3~ = 0 
(c~ = 1, 2), has been described previously in [2]. Here we will consider the problem of inverting the 
relation D(C) in the more general situation of the three-dimensional bending of a prismatic solid. 
Assuming the material to be isotropic and following the method previously described in [5], we will 
first express the positive-definite tensile tensor U = (C • C:r) 1/2 in terms of the symmetrical Jaumann 
stress tensor S = D.  A r, where A = (C. Cr) -1/2" C is the orthogonal tensor, which defines the rotations 
of the material fibres when an elastic solid is deformed. The problem of constructing the relation C(D) 
then reduces to representing the rotation tensor A in terms of the Piola tensor: A = A(D), since the 
following equalities hold 

C = U - A  = q0(S)- A(D) = q0[D. Ar(D)] - A(D) (2.7) 

Here q0(S) is a tensor function, inverse to the function S = f(U). The relation A(D) is found as the solution 
of the equation 

D ,  A r = A .  D r ( 2 . 8 )  

In the problem of the bending of a beam considered here, Eq. (2.8), by (1.5) and (1.6), is equivalent 
to the following 

T T 
D O • A o = A 0 . D O 

(2.9) 
D O = DIx= 0 -- Dsk(Xl, X2)is®it, A0 = A[x= 0 

The solution of Eq. (2.9) is non-unique and has the form 

A o = K -~ . D O 
(2.10) 

K = + ~ l a l ® a l + d ~ 2 a 2 ® a 2 + ~ a 3 ® a 3  

where Lm and am are the eigenvalues and eigen unit vectors of the tensor D O • Do r. 
Although in sections of the beam x 3 = const, fairly far from the section x3-- 0, the rotations of the 

material fibres can be extremely large, we can assert that if the parameters co and l are not too great, 
the angles of rotation of the material fibres at each point of the section of the beam x3 = 0 will not 
exceed 90 °. Then, as was shown in [5], the unique solution of Eq. (2.9) for Ao can be separated from 
the set (2.10) using the inequalities 
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detA o > 0, trA o > 1 (2.11) 

In the special case of pure bending, relations (2.10) and (2.11) lead [2] to an explicit expression for 
the tensor A0 in terms of the tensor Do. In general, finding the rotation tensor A0 from formulae (2.10) 
and (2.11) requires the use of numerical methods. 

Thus, taking conditions (2.11) into account we conclude that a unique representation exists of the 
components of the deformation gradient Cs~ in terms of the Piola stresses Dmn, which enables one to 
formulate the two-dimensional boundary-value problem (1.7), (2.3) and (2.4)-(2.6) in the stresses Dmn. 

The next step in transforming the two-dimensional boundary value problem on the cross-sections of 
the beam consists of satisfying the equilibrium equations (1.7) identically using the stress functions. 

We will express the unknown stresses Dmn in terms of five new unknowns using the following formulae 

D I I  = 0 , 2  , D21 = - O , 1  , Dcq 3 = coOcq3; ot = 1, 2; !3 = 2, 3 
(2.12) 

D32 = - O13, 1 - -  023, 2, D33 = O12, 1 + 022, 2 

Expressions (2.12) identically satisfy the equilibrium equations (1.7) and represent the general solution 
of these equations. The latter arises from the fact that the functions O12, 022, O13, 023 are defined 
uniquely by the stresses specified in the simply-connected region 6, while the function • is defined, 
apart from an arbitrary additive constant, which has no effect on the stressed state of the solid. The 
quantities 0,  O12 , 022 , O13 , 023, called the stress functions, remain subordinate to the compatibility 
equations (2.4), relations (2.) and (2.6) and boundary conditions (2.5). The latter are written in terms 
of the stress function as follows (s is the actual length of the arc of the boundary contour): 

~0]~S = 0,  n 1 0 1 2 + n 2 0 2 2  = 0,  n1013+n2023 = 0 (2.13) 

If the cross-section of the beam G is a multiply connected region, its boundary Oc~ consists of the 
external contour 7o and the contours of the apertures ~ (t = 1, 2 . . . . .  N). By virtue of the first equality 
of (2.13) the stress function • takes constant values B0 and Bt on each of the closed curves 70 and 7t. 
Since the addition of an arbitrary constant to the function • has no effect on the stressed state of the 
beam, without loss of generality we can put B0 = 0. Additional conditions for determining the unknown 
constants Bt are the integral relations which express the requirement that the function ul(xl, x2) must 
be unique in the multiply connected region 

~ClldXl + = 0, t = 1, 2 N C21dx2 (2.14) 

"t't 

The linearity of the boundary conditions (2.13) is an important advantage of the formulation of the 
boundary-value problem over the cross-section of the beam using the stress functions. 

3. THE B O U N D A R Y  C O N D I T I O N S  AT THE ENDS OF THE BEAM 

The solution of the two-dimensional boundary-value problem on the cross-section of the beam, 
formulated in Section 2, enables us to satisfy exactly the equilibrium and compatibility equations in 
the volume of the beam and the boundary conditions on its side surface. This says nothing about the 
boundary conditions at the end surfaces of the cylinder x3 = const, which may only be satisfied approxi- 
mately by appropriate choice of the constants co and l. 

We will determine the principal vector F and the principal moment M of the forces acting in an 
arbitrary cross-section of a cylindrical beam, subjected to deformation of the form (1.4) when there is 
no load on the side surface. From Eq. (1.6) we have (everywhere henceforth the integration is carried 
out over the region cy) 

F(X3)  = I I i3 '  Dd~ = E l i  1 + F 2 j  2 + f 3 j  3 
(3.1) 

F k = IID3kdcy, k = 1,2,3 

where F~ are constant quantities. The necessary equilibrium condition F(a) - F(b) of the part of the 
cylinder bounded by the side surface and the cross-sectionsx3 = a andx3 -- b, where a and b are arbitrary 
real numbers, by relations (1.5) and (3.1) leads to the equations 
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s2F 2 - $ 3 F  3 = O, s3F 2+$2F 3 = 0 

s 2 = coso)b-coso)a, s 3 = sinolb-sincoa (3.2) 

• The determinant of system (3.2) with respect to F 2 and F3 is non-zero, and consequently F2 = F3 = 0. 
Hence, the principal vector of the forces in the cross-section of the rod for a deformation of the form 
(1.4) is the same for all sectionsx3 = const and is directed along the X3 axis. We will now calculate the 
principal moment M of the forces in the cross-sections x3 = const with respect to a certain point on 
the straight line X2 = X3 = 0. Since the principal vector is parallel to this straight line, the moment is 
independent of the choice of the point on the X1 axis, which enables us to calculate the moment about 
the point X1 = X2 = )(3 = 0. Taking into account the fact that F2 = F3 = 0, using relations (1.4) and 
(1.5) we obtain 

M(x3) = - fS[ i3"D×(u2J2+u3J3+Uli l  +lX3ii)]do = Mlil  +M2J2+M3j 3 (3.3) 

M 1 = ff(O33u2-O32u3)d(y, M2 = Sf(O31u3-O33ul)d(Y, 
(3.4) 

According to expressions (3.4), the quantities Mk (k = 1, 2, 3) are constant. From the condition that 
the moments of all the forces applied to the part of the cylinder between the planesx3 = a andx3 = b 
• should balance, we obtain 

s2M 2 - s3M 3 = O, s3M 2 + s2M 3 = O, 

whence it follows that M2 = M3 = 0. 
Thus we have proved that the realization of deformation (1.4) requires the application to ends of 

the cylinder of system of forces which is statically equivalent to the force F1 and the moment M1, acting 
at a point on the axis of a helical line, into which the generatrix of the cylinder is converted after 
deformation, and directed along this axis. After solving the two-dimensional boundary-value problem 
in the cross-section, formulated in Section 2, the force and moment become known functions of the 
mrameters co and I 

F I = F(o), I), M l = M(o), 1) (3.5) 

The conversion of the functions F and M enables the parameters o~ and l to be determined for specified 
values of the force F1 and the moment M 1. The functions (3.5) possess the following property 

~F/~o~ = ~MI~I (3.6) 
to prove which we will consider the function FI as the linear (i.e. calculated per unit length) potential 
energy of deformation of an elastic beam, calculated from the solution u~(xl, x2, o), l) of the two- 
dimensional boundary-value problem (1.7), (2.2), (2.3), (2.5) 

n(¢o, 1) = f f W[Uk(Xl, X2, ¢J), l)', (0, l]d{~ (3.7) 

Taking into account the formulae 

Ojz/OO~ = x3j 3, Oj3/Oo) = -xaj 2, Oj2]Ol = 3j31Ol = 0 

and the relations which follow from the symmetry of the Kirchhoff stress tensor 

CksDkn = CknDks 

we obtain from relations (1.2), (1.5), (1.6) and (3.7) 

0 Ouk ~ t'Ouk'~ Ou3 ~u2q + - oiD3z..D-- d (0D33 ~-~]d6 (3.8) 
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OH et" OCmn 
3---7 = J J D m " T d o  = ~ Doldc~+ 

O Ouk O /Ouk5 3u3 Ou2q 
+ I I I D I k ~ x I ( ' - ~ )  + COD32~-  D2k~x2k"~)- + coD33.-.g-]d(~ (3.9) 

Integrating by parts and applying Green's formula, it is easy to verify that the second integral on the 
right-hand side of Eq. (3.8) and the second integral on the right-hand side of Eq. (3.9) vanish by virtue 
of the equilibrium equations (1.7) and the boundary conditions (2.5). Referring to formulae (3.1) and 
(3,4), we obtain 

F 1 = OH(co, l)/O1, MI = OH(co, 1)/Oco (3.10) 

whence relations (3.6) follow. 

4. VARIATIONAL FORMULATIONS OF 
THE TWO-DIMENSIONAL PROBLEM 

The non-linear two-dimensional boundary-value problem formulated in Section 2 for a region in the 
form of the cross-section of the beam allows of different variational formulations, which follow from 
the variational principles of the non-linear theory of elasticity [6]. Below we derive expressions for some 
functionals, the stationarity conditions of which are equivalent to the two-dimensional boundary-value 
problem describing the three-dimensional bending of prismatic solids. Note that these functionals, 
compared with the similar functionals of the general three-dimensional theory [6], have singularities 
due to the special form of the deformation of three-dimensional bending (1.4). 

The Lagrange-type functional 

Fl,[Uk] = IfW(uk)d~ (4.1) 

The functional 1-i~ is defined on a set of functions of two variables uk(x~, x2) (k = 1, 2, 3), twice 
differentiable in the region (y, which, according to relations (1.4), specify the field of displacements of 
the elastic cylinder. The specific deformation energy W(G) is assumed to be expressed in terms of the 
function uk using relations (1.5). The condition for the functional (4.1) to be stationary: ~FI 1 = 0 is 
equivalent to the equilibrium equations (1.7) and boundary conditions (2.5), in which the stresses Dsk 
are expressed in terms of the function uk. 

The Hu-Washizu-type functional 

1-12[ Co~ k, C32, C33, Dc~k, D32, D33, u k] = 

= f I [  W(Cetk, C32, C33) - Dak(Ce~ k - Igk, ~) - D32(C32 + 0.).3) - D33(C33 - cou2)]dO" 
(4.2) 

Here and below cz = 1, 2 and k = 1, 2, 3. 
In the functional r I  2 the continuously differentiable components of the deformation gradient, the 

components of the Piola stresses and the function Uk are varied independently. Euler's equations of 
the variational problem ~FI 2 = 0 consist of the equilibrium equations (1.7), the geometrical relations 
(1.5) and the defining relations of the material in the form 

Dak = OW/OCak, D32 = 0W/0C32, D33 = OW/OC33 (4.3) 

Conditions (2.5) serve as the unique boundary conditions for functional (4.2). 
The Tonti-type functional 

II3[Cotk, C32 , C33 , (1), (1)12 , (I)22 , (I)13 , ci)23 , B1, B 2 . . . . .  BN] = 

= I f [ ~ , 2 C l l  + 0,)(I)12C12 + co~13C13 --(I),l C21 + fD(I)22C22 + co(I)23C23 -- 

-- ((I)13, I + 1I)23, 2)C32 + ((I)12, 1 + (I)22, 2)C33 - W(Co~k, C32, C33) ]do (4.4) 
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Here, the differentiable components of the tensor C are comparable with the differentiable stress 
functions, which satisfy the conditions (t= 1, 2, . . . ,  N) 

01~ ° = 0, dPlv ' = B,, n~O~21~ ~ = n~O~3[~ ~ = 0 (4.5) 

The constants Bt are not specified in advance and are subject to variation. The consequences of the 
stationarity of the functional II 3 are the compatibility equations (2.4), which determine relations (4.3), 
in which the stresses are expressed by formulae (2.12), and the integral relations (2.14). 

The Castigliano-type functional 

I]4[D31 ' d/I, (I)12 ' (I)22 ' (1:)13 ' IJ~123 ' B1, B 2 . . . . .  BN ] = 

= I I [V(D3 , ,  * ,  "12 '  (I)22' ¢IPl3' (I)23)- ID31]dlJ 
(4.6) 

Here V is the specific additional energy of the elastic material, which is a function of the Piola 
stress tensor and is connected with the specific potential energy of deformation W by a Legendre 
transformation 

V(D) = t r [c r (D)  - D ] -  W(D), C(D) = dV/dD 

The method of determining the relation C(D), necessary to construct the function V(D), is described 
above in Section 2. 

In relation (4.6) we have used representation (2.12) of the Piola tensor in terms of the stress functions, 
which satisfy the equilibrium equations (1.7) identically. The permissible stress functions must be 
differentiable and must satisfy conditions (4.5). The conditions for the functional ~I 4 to be stationary 
consist of the compatibility equations (2.4), expressed in terms of the stress functions, the relation 
l = OV/OD31 and the integral relations (2.14). 

The Reissner-type functional 

1715[u~, Dmn] = II[Daku~,c~ + lD31 - 0)D32u 3 + 0ID33u 2 - V(Dmn)]d~ (4.7) 

The functional (4.7) is defined on a set of functions uk(xl, X2), Dmn(Xl, Y2), differentiable in the region 
(y. From the stationarity condition ~II 5 = 0 we obtain the equilibrium equations (1.7), the boundary 
conditions (2.5) and the defining relations of the elastic material in the following form: 

uk, a = ~V/ODak, l = OV]OD31, CObl 3 = -~V]~D32,  (.ou 2 = OV/~D33 

These variational formulations can be used when solving the non-linear two-dimensional problem 
over the cross-section of a prism, subjected to three-dimensional bending, using Ritz' method or the 
method of finite elements. 
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